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Abstract The nonlocal identification problem related to nonlinear ion transport
model including diffusion and migration is studied. Ion transport is assumed to be
superposition of diffusion and migration under the influence of an electric field. Math-
ematical modeling of the experiment leads to an identification problem for a strongly
nonlinear parabolic equation with nonlocal additional condition. Uniqueness of the
nonlinear direct problem solution, and its continuity with respect to the total charge
function is proved. An existence of a quasisolution of the identification problem is
proved in the class of derived admissible coefficients. The nonlinear finite difference
approximation of this problem, with an appropriate iteration algorithm, is derived.
Numerical solutions of the identification problem are presented for various values
of valences and diffusivities of oxidized and reduced oxidized species. The obtained
results permits one to derive behaviour of the concentration and total charge depending
on physical parameters.
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1 Introduction

Mathematical modeling of kinetics and mass-transfer in electrochemical events and
related electroanalytical experiments, generally consists of dealing with various
physico-chemical parameters, as well as complicated mathematical problems, even
in their simplest statement. These type of models are also complicated by the lack of
a constitutive equations relating the electric field potential and the ion concentration
(see, for instance [1–5] and references therein). Linear mathematical models of such
problems in electrochemistry, in general, and in chronoamperometry, in particular, are
usually based on the Nernst-Planck equation [1]. Analytical solutions of these sim-
plest models permit one to understand experiment and to find out some relationships
which can not be estimated experimentally. In chronoamperometry such a classical
result has first been obtained experimentally by Cottrell [6]. In 1902 Cottrell derived
a linear initial-boundary value problem (IBVP) and demonstrated that, if an extreme
potential is suddenly applied to an electrode in contact with a solution containing a
uniform concentration of an electroreactant, then the resulting current response IC ,
defined to be as Cottrellian, is proportional to 1/

√
t . Subsequently this result has also

been confirmed experimentally as well as theoretically. This relationship assumes
that the ion transport is purely diffusive, planar and semi-infinite. Deviations from
the ideal Cottrellian response provide information about complex chemical kinetics
and kinetics of electron transfer. Further various modifications of the relationship
IC ∼ 1/

√
t were investigated based on linear mathematical models. Thus, the trans-

port response of electrodes under conditions of diffusion and migration was studied
by Lange and Doblhofer [7]. They used the Nernst-Planck equation to derive a linear
model for the transport of the electroactive species with zero initial condition. The
problem then was solved by digital simulation techniques. For equal diffusion coeffi-
cients of all ions a linear model with an analytical formula and some numerical results
have been obtained by Myland and Oldham [5]. Here the effect of migration factor
to the limiting Cottrell currents was also studied. For the case of unequal diffusion
coefficients this linear model was developed by Bieniasz [8]. Here the effects of the
diffusivity ratio DR/DC , as well as of the electroactive and counter-ions on the limit-
ing chronoamperometric currents were examined. Analytical formulas of the current
response, and comparative analysis for linear models in chronoamperometry under
conditions of diffusion and migration, have been given by Hasanov and Hasanoglu
[9,10].

In the case of two-species migrating under the influence of the electric field, the
nonlinear mathematical model of mass and charge transport in a controlled potential
experiment have first been derived by Cohn, Pfabe and Redepenning [11]. In this model
ion transport is assumed to be superposition of diffusion and migration. Although,
due to lack of electrochemical information, this model is restricted to the two-species
(oxidized and reduced) case, even in this simplest, from the point of view physico-
chemical model, case the obtained mathematical problem is highly complicated, as we
will see below. Specifically, in the case of two-species migrating under the influence
of the electric field, the scaled mathematical model leads to the following problem
[11]
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⎧
⎨

⎩

ut = (g(u)ux )x + q ′(t)h(u)x , (x, t) ∈ �∞ := (0,∞) × (0,∞),

u(x, 0) = 0, x ∈ (0,∞),

u(0, t) = 1, t ∈ (0,∞);
(1)

q(t) =
∫ ∞

0
u(x, t)dx, t ≥ 0, (2)

with respect to the concentration u(x, t) of the reduced species.
This is an identification problem for the nonlinear parabolic Eq. 1, with the addi-

tional nonlocal condition (2), and with respect to the unknown coefficient q(t) (scaled
total charge). The pair of functions 〈u(x, t), q(t)〉 will be defined as a solution of the
identification problem (1)–(2).

The coefficients g(u) > 0 and h(u) express an influence of the diffusion and
migration in the ion transport, and have the forms [11]:

g(u) := z0 + (zr − z0)u

z0 + (zrκ − z0)u
, h(u) := κu

z0 + (zrκ − z0)u
. (3)

Here and below dimensionless parameter κ := Dr/D0 represents the diffusivity ratio.
The parameters zr and z0 denote the valences of the reduced and oxidized species.

The similarity solution v(y), y = x/
√

t , of the nonlocal identification problem
(1)–(2) satisfies the following nonlocal identification problem

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(g(v)v′)′ + 1
2 yv′ + 1

2 ah(v)′ = 0, y ∈ R+,

v(0) = 1,

v(∞) = 0,

∫ ∞
0 v(y)dy = a > 0,

(4)

for the nonlinear ODE. An analysis of this model is given [11]. Based on the itera-
tion scheme obtained in [11], various numerical algorithms for this one-dimensional
identification problem have been proposed in [12–14].

Comparative computational analysis between linear model and the nonlinear model
(1)–(2) has been studied in [15]. Due to mathematical as well as computational dif-
ficulties related to solving the nonlinear and nonlocal identification problem (1)–(2),
as a first attempt, in [15] the nonlinear model (1)–(2) has been considered studied for
the special case 〈zr , zo〉 = 〈−2,−1〉. Computational results presented in [15] permit
one to obtain upper and lower bounds for the scaled total charge, corresponding to the
nonlinear model, via the appropriate upper and lower linear models.

The present work is aimed to study the nonlinear ion transport model (1)–(2),
including diffusion and migration. Note that identification problems with nonlocal
additional condition in integral form, arise also in convection-diffusion and settler
models [16,17]. However in all these models parabolic equations are linear one.

In the next section some important physico-chemical and mathematical aspects
of the nonlinear model (1)–(2), are derived. Reduction method for the identifica-
tion problem is proposed in Sect. 3. The nonlinear finite-difference scheme for the
reduced problem, and iteration algorithm are given in Sect. 4. In Sect. 5 computational
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experiments related to behavior of the solution, depending on various values of
valences and diffusivities of oxidized and reduced oxidized species, are presented.
The final Sect. 6 contains some conclusions.

2 Preliminary analysis of the nonlinear ion transport model

Although the mathematical model of the nonlinear ion transport problem is given
in [11], for completeness, we briefly discuss here some distinguished features of this
scaled model. The general background of the physico-chemical aspects of the problem
can be found in [1,4].

Let x ≥ 0 and t ≥ 0 be the scaled space and time variables. To describe a stan-
dard experiment, we assume that there is an electrode at x = 0, and a polymeric
medium containing mobile ions and electroactive species extending from the elec-
trode to x = ∞. It is assumed that the electroactive species are in oxidized form
before the time t = 0. At t = 0 a potential E is introduced at the electrode. This
causes a fraction of the oxidized species at the surface of the electrode to be reduced.
We denote by u = u(x, t) and Dr > 0 the scaled concentration and diffusion of the
reduced species. As oxidized species are reduced at the surface of the electrode, its
concentration decreases, and the concentration u = u(x, t) of the reduced species
at the electrode increases. As a result there arise two diffusion processes: oxidized
species diffuse in toward x = 0, and the reduced species diffuse out into the medium.
Therefore ion transport here can be regarded as a superposition of diffusion, which is
a random motion of small particles immersed in the medium, and migration, which is
a motion under the influence of an electric field. Exchange of electrons between the
surface of the electrode and electroactive species in the time t > 0 gives rise to the
current response I = I(t), which is related to the concentration of reduced species
by the balance equation [1]

u0

zr

∫ ∞

0
u(x, t)dx = 1

nF Se

∫ t

0
I(τ )dτ. (5)

Here n is the number of electrons gained by an ion upon reduction, F is Faraday’s
constant, Se is the surface area of the electrode, and u0 is the concentration at x = 0
of the reduced species at the electrode. The total charge carried by the reduced species
is defined to be

Q(t) =
∫ t

0
I(τ )dτ.

These two definitions permit one to define the total charge Q(t) and the current
response I(t) via the concentration u = u(x, t) of the reduced species:

Q(t) = nF Seu0

zr

∫ ∞

0
u(x, t)dx, I(t) = nF Seu0

zr

∫ ∞

0
ut (x, t)dx . (6)
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Hence the scaled total charge q(t) defined by (2) is

q(t) = zr

nF Seu0
Q(t). (7)

As was established experimentally in [2], for extremely high voltage perturbation,
the concentration of oxidized species at the electrode drops immediately to zero, and,
at the same time, the concentration u(x, t) of the reduced species at the electrode
(x = 0) is made to jump from zero to u0/zr . The process of perturbing the voltage
in this manner and studying the resulting current response IC (t) as a function of time
is known as chronoamperometry [1]. In the case of purely diffusive flux of electroac-
tive species, a relationship between the time t > 0 and the current response IC has
first been experimentally obtained in 1902 by Cottrell. He was found that the current
response is proportional to 1/

√
t :

IC ∼ 1/
√

t .

This relationship is defined to be Cottrellian. The theoretical analysis of this rela-
tionship has been given by Cohn in [11], based on the purely diffusive mathematical
model

⎧
⎨

⎩

ut = Duxx , (x, t) ∈ R+ × R+, R+ = (0,+∞),

u(x, 0) = 0, x ∈ R+,

u(0, t) = u0/zr , t ∈ R+.

The analytical formula obtained here for Cottrellian is as follows:

IC (t) = nF Seu0

zr

√
D

π t
. (8)

Taking into account (6)–(7) we may conclude that the scaled total charge q(t), defined
by (2), is proportional to

√
t . However this result is valid for a purely diffusive math-

ematical model, and presence of any migration term in the above parabolic equation
leads to essential deviations from the Cottrellian, as the results presented in [10] show.
Moreover, influence of the valences zr and z0 of the reduced and oxidized species, as
well as an influence of the diffusivity ratio κ > 0, are not taken into account in this
model.

We will consider the mathematical model (1)–(2) under the following assumptions:

(A1) u(∞, t) = ux (∞, t) = 0, ∀t > 0;
(A2) zr Dr = zo Do.

Assumption (A1) is based on experimental and theoretical results (see, [11] and
references therein), obtained for the nonlinear model (1)–(2). Namely, these results
show that for a fixed time t ∈ (0,∞), the concentration function u(x, t) and its partial
derivative ux (x, t) decreases rapidly to zero, as x → ∞, for all t > 0. In this study,
we will only assume u(L , t) = 0, where L > 0 is a large enough number, taking into
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Table 1 The admissible values of valences and corresponding values of diffusivity ratio

〈zr , z0〉 〈−4,−3〉 〈−3,−2〉 〈−2, −1〉 〈1, 2〉 〈2, 3〉
κ = Dr /D0 3/4 2/3 1/2 2.0 3/2

account the property u(x, t) → 0, as x → ∞, ∀t > 0 of the concentration function
u(x, t).

Although the assumption (A2) makes some restriction for values of diffusivities
Dr and D0, it still permits one to analyze the nonlinear model (1)–(2) for real class
of materials. Specifically, under the assumption zr Dr = z0 D0, the diffusivity ratio
κ = Dr/D0 can be defined via the valences as follows: κ = z0/zr . According the
admissible values of the valences, given in Table 1, the parameter κ assumes appro-
priate values in the interval [0.5, 2]. In terms of the considered physical model these
values are large enough for theoretical analysis of the considered experiment, since
include the both cases κ < 1 (diffusivity of oxidized species dominates) and κ > 1
(diffusivity of the reduced species dominates). Note that, the similar values of the
diffusivity ratio κ are used in experimental studies (see, [2,5]).

Under the assumption (A2) the functions g(u) and h(u), defined by (3), have the
following forms:

g(u) := 1 +
(

zr

z0
− 1

)

u, h(u) := 1

zr
u, (9)

and the nonlinear term h(u)x in the parabolic Eq. 1 becomes h(u)x := ux/zr . Thus,
with the above assumptions (A1)-(A2) the mathematical model (1)–(2) can be replaced
by the following identification problem in the bounded domain �T := (0, L)×(0, T ]:

⎧
⎨

⎩

ut = (g(u)ux )x + 1
zr

q ′(t)ux , (x, t) ∈ �T ,

u(x, 0) = 0, x ∈ (0, L),

u(0, t) = 1, u(L , t) = 0, t ∈ (0, T ];
(10)

q(t) =
∫ L

0
u(x, t)dx, t ∈ [0, T ]. (11)

Since the considered mathematical model is a scaled one, the values of concentration
function u(x, t) are in [0, 1], i.e. it satisfies the following condition:

0 ≤ u(x, t) ≤ 1, ∀(x, t) ∈ �T . (12)

Problem (10)–(11) will be defined as the nonlocal identification problem in the
bounded domain �T := (0, L) × (0, T ]. Accordingly, for a given coefficient q(t), as
well as for given parameters κ , zr , z0, and functions g(u) and h(u), defined by (9), the
nonlinear initial-boundary value problem (10) will be defined as the direct problem.
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3 Reduction method for the identification problem (10)–(11)

Let us consider first the nonlinear direct problem (10). To define an appropriate class
of weak solutions of this problem we assume that q(t) ∈ Q is a given function from
some class of admissible coefficients Q, which will be defined below. Multiply the
both sides of the nonlinear parabolic equation to the function u(x, t), and then inte-
grate on �t := (0, L) × (0, t], t ∈ (0, T ]. Applying integration by parts and then
using elementary transformations we obtain:

1

2

∫ L

0

∫ t

0
u2

t (x, t)dτdx +
∫ t

0

∫ L

0
g(u)u2

x (x, τ )dxdτ

=
∫ t

0
[g(u(L , τ ))ux (L , τ )u(L , τ ) − g(u(0, τ ))ux (0, τ )u(0, τ )]dτ

+ 1

zr

∫ t

0
q ′(τ )

∫ L

0
u(x, τ )ux (x, τ )dxdτ, t ∈ (0, T ].

Taking into account the initial and boundary conditions u(x, 0) = 0, u(0, t) = 1,
u(L , t) = 0, t ∈ (0, T ], and the condition ux (L , t) = 0, after integrating we get:

1

2

∫ L

0
u2(x, t)dx +

∫ t

0

∫ L

0
g(u)u2

x (x, τ )dxdτ

= − 1

κ

∫ t

0
ux (0, τ )dτ − 1

2zr
q(t), t ∈ (0, T ]. (13)

This energy identity provides further insight into the weak solution class for the
direct problem. Specifically, the left hand side is well-defined for all functions u ∈
V̊ 1,0(�T ) ∩ C1(�T ), V̊ 1,0(�T ) ⊂ V 1,0(�T ), where V 1,0(�T ) is the Banach space
of functions with the norm ([18])

‖u‖V 1,0(�T ) = max
t∈[0,T ] ‖u‖H0(0,L) + ‖ux‖H0(�T ), (14)

and V̊ 1,0(�T ) := {u ∈ V 1,0(�T ) : u(L , t) = 0}. Here and below ‖ · ‖H p(0,L) and
‖·‖H p(�T ) are norms of the Sobolev spaces H p[0, L] and H p(�T ), respectively. Note
that due to the homogeneous Dirichlet boundary condition u(L , t) = 0, the norms
‖ux‖H0(�T ) and ‖u‖H1(�T ) are equivalent.

Thus, by the above conclusions, we will look for a solution of the direct problem
(10) in the Banach space V̊ 1,0(�T ), assuming additionally u ∈ C1(�T ). Evidently,
all integral in (13) are continuous in t ∈ [0, T ]. Therefore, the natural requirement for
the coefficient q(t) is its continuity: q(t) ∈ C[0, T ].

The left hand side of (13) is defined to be the energy integral.
Let us integrate now the both sides of the parabolic Eq. 10 on �t := (0, L)× (0, t],

t ∈ (0, T ]:
∫ L

0

∫ t

0
uτ dxdτ =

∫ t

0

∫ L

0
(g(u)ux )x dxdτ + 1

zr

∫ t

0
q ′(τ )

∫ L

0
ux dxdτ, t ∈ (0, T ].
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Calculating the integrals we obtain:

∫ L

0
u(x, t)dx =

∫ t

0
[g(u(L , t))ux (L , t) − g(u(0, t))ux (0, t)]dτ

+ 1

zr

∫ t

0
q ′(τ )[u(L , t) − u(0, t)]dτ, t ∈ (0, T ].

Using here the conditions u(L , t) = ux (L , t) = 0, ux (0, t) = 1, also, g(u(0, t)) =
g(1) = 1/κ , we get

∫ L

0
u(x, t)dx = − 1

κ

∫ t

0
ux (0, τ )dτ − 1

zr

∫ t

0
q ′(τ )dτ, t ∈ (0, T ].

Therefore

∫ L

0
u(x, t)dx = − 1

κ

∫ t

0
ux (0, τ )dτ − 1

zr
q(t), t ∈ (0, T ], (15)

since q(0) = 0.
Let us assume now that q(t) ∈ Qad is the solution of the identification problem

(10)–(11). Then using the nonlocal additional condition (11) on the left hand side of
(23) we find:

q(t) = − zr

(1 + zr )κ

∫ t

0
ux (0, τ )dτ, t ∈ [0, T ]. (16)

Differentiating formally the both sides and substituting in the parabolic Eq. 10 we
obtain the following reduced identification problem:

⎧
⎨

⎩

ut = (g(u)ux )x − 1
(1+zr )κ

ux (0, t)ux , (x, t) ∈ �T ,

u(x, 0) = 0, x ∈ (0, L),

u(0, t) = 1, u(L , t) = 0, t ∈ (0, T ];
(17)

Proposition 3.1 The pair 〈u(x, t), q(t)〉, u(x, t) ∈ V̊ 1,0(�T ), q(t) ∈ Qad is the
solution of the identification problem (10)–(11), if only if, the function u(x, t) ∈
V̊ 1,0(�T ) is the solution of the nonlinear initial-boundary value problem (17).

We use now formula (16) on the right hand side of identity (13). We have:

1

2

∫ L

0
u2(x, t)dx +

∫ t

0

∫ L

0
g(u)u2

x (x, τ )dxdτ

= − 1 + 2zr

2κ(1 + zr )

∫ t

0
ux (0, τ )dτ, t ∈ (0, T ]. (18)

This integral identity is defined to be the energy identity for the reduced identification
problem (17).
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Formula (16) also permits one to express the scaled total charge q(t) via the total
value of the left flux at x = 0, during the time t ∈ (0, T ]. Indeed, by the physical
definition of the flux at x = 0, J0(t) = −(g(u)ux (x, t))x=0. Since g(u(0, t)) = 1/κ ,
we have J0(t) = −ux (0, t)/κ . Taking into account this in (16) we obtain:

q(t) = zr

(1 + zr )

∫ t

0
J0(τ )dτ, t ∈ [0, T ]. (19)

Furthermore, formula (19) with the energy identity (18), and with the definition
J0(t) = −ux (0, t)/κ allows to define the sign of the flux J0(t), at x = 0. Indeed,
since (1 + 2zr )/(2κ(1 + zr )) > 0 for all admissible values of valences, the identity
(18) implies that the flux J0(t) at x = 0 is positive:

J0(t) = − 1

κ
ux (0, t) > 0, t ∈ (0, T ]. (20)

This result agrees with the physical meaning of the flux.
Thus, the nonlinear identification problem (10)–(11) is reduced to the nonlinear

initial-boundary value problem (17), which does not contain the function q(t). The
main distinguished feature of this approach is that the problem of solving the cou-
pled problem (10)–(11) is separated into the two subproblems: solving the nonlinear
parabolic problem (17), and then finding the function q(t) by the integration formula
(11).

4 The numerical algorithm and test examples

We derive here an iteration algorithm for the reduced problem (17), using an implicit
finite difference scheme for the linearized reduced problem:

⎧
⎪⎨

⎪⎩

u(n)
t = (g(u(n−1))u(n)

x )x − 1
(1+zr )κ

u(n−1)
x (0, t)u(n)

x , (x, t) ∈ �T ,

u(n)(x, 0) = 0, x ∈ (0, L),

u(n)(0, t) = 1, u(n)(L , t) = 0, t ∈ (0, T ].
(21)

Denote by v(x, t) = u(n)(x, t), g̃(x, t) = g(u(n−1)(x, t)), ν(t) = u(n−1)
x (0, t)/((1 +

zr )κ). Then the linearized reduced problem (21) can be rewritten in the form of the
initial-boundary value problem for the linear advection-diffusion equation:

⎧
⎨

⎩

vt = (g̃(x, t))vx )x − ν(t)vx , (x, t) ∈ �T ,

v(x, 0) = 0, x ∈ (0, L),

v(0, t) = 1, v(L , t) = 0, t ∈ (0, T ].
(22)
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To solve the linearized reduced problem (22) we define the uniform space and time
grids

wh = {xi ∈ (0, l] : xi = ihx ; i = 0, Nx , hx = l/Nx },
wτ = {t j ∈ (0, T ] : t j = jht ; j = 0, Nt , ht = T/Nt },

and use the standard finite difference approximations

ux,i j := ui+1, j − ui, j

hx
, ut,i j := ui, j+1 − ui, j

ht
, ui, j := u(xi , t j ), i = 1, N , j = 1, M

of the partial derivatives ∂u/∂x , ∂u/∂t . Here the constants hx > 0 and ht > 0 are the
grid parameters.

For the numerical solution of the linear parabolic problem (22) we use the following
implicit monotone difference scheme [19]

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

vi, j+1−vi, j
ht

− 1
hx

[
g̃(xi+1/2, t j )

vi+1, j+1−vi, j+1
hx

− g(xi−1/2, h j )
vi, j+1−vi−1, j+1

hx

]

+ν(t j )
vi+1, j+1−vi−1, j+1

2hx
= 0, i = 1, Nx − 1, j = 1, Nt − 1;

vi,0 = 0, i = 0, Nx ,

v0, j = 1, vNx , j = 0, j = 1, Nt ,

(23)

which has the accuracy O(h2
x + ht ) on the uniform grid wht = wh × wt .

4.1 Numerical test for the discrete problem (23)

The function

u(x, t) = exp(−t x2), x ∈ [0, 4], t ∈ [0, 1]

is the analytical solution of the linear parabolic problem

⎧
⎨

⎩

vt = (g̃(x, t))vx )x − ν(t)vx + f (x, t), (x, t) ∈ �T ,

v(x, 0) = ϕ(x), x ∈ (0, L),

v(0, t) = µ1(t), v(l, t) = µ2(t), t ∈ (0, T ],

with the given coefficients

g̃(x, t) = 1 + x2, ν(t) = √
t,

and the source term
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Table 2 Numerical results for the linear problem on different grids

hx (Nx ) ht (Nt ) R = ht /h2
x εv := ‖v − vh‖∞ ηt

0.1 (41) 0.05 (21) 5.0 5.52 × 10−2 −
0.05 (81) 0.05 (21) 20.0 5.52 × 10−2 −
0.05 (81) 0.025 (41) 10.0 2.96 × 10−2 0.8991
0.05 (81) 0.125 (81) 5.0 1.54 × 10−2 0.9427
0.05 (81) 0.0063 (161) 2.5 7.8 × 10−3 0.9814

f (x, t) = {−x2 + 2t[3x2 − 2x2t (x2 + 1) + 1] + 2xt
√

t} exp(−t x2),

and appropriately chosen functions ϕ(x), µ1(t), µ2(t), obtained from the above
analytical solution.

Table 2 shows the absolute sup-norm errors obtained on different grid parameters
Nx , Nt . The last column of the table shows the approximation errors defined as

ηt = log(ε
(1)
t /ε

(2)
t )

log(N (2)
t /N (1)

t )
.

These errors correspond to the time grids given on the last three lines of the Table 2.
The smallest absolute error εv = 7.8×10−3 is obtained on the grid of size Nx × Nt =
81 × 161, with R = 2.5, as the last line of the table shows. This grid will be used in
subsequent computational experiments.

4.2 Numerical test for the nonlinear problem (17)

In this example we apply the linearization scheme (21) to the nonlinear problem

⎧
⎨

⎩

ut = (g(u)ux )x − ν(t)ux + f (x, t), (x, t) ∈ �T ,

u(x, 0) = ϕ(x), x ∈ (0, L),

u(0, t) = µ1(t), u(L , t) = µ2(t), t ∈ (0, T ],
(24)

with the coefficient g(u), given by (9), and with the parameter κ = 0.5. The coefficient
ν(t) is chosen as ν(t) = √

t , taking into account the relationship q(t) ∼ √
t for the

classical Cottrellian. The analytical solution

u(x, t) = exp(−t x2), x ∈ [0, 4], t ∈ [0, 1]

of problem (24) corresponds to the source term

f (x, t) = {−x2 − 4x2t2(κ − 1) exp(−t x2) − g(u)(4x2t2 − 2t − 2xtν(t))}
× exp(−t x2),

and to appropriately chosen functions ϕ(x), µ1(t), µ2(t).
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Table 3 Numerical results for the nonlinear problem on different grids

hx (Nx ) ht (Nt ) R = ht /h2
x εu := ‖u − uh‖∞ Iteration ηt

number

0.05 (81) 0.025 (41) 10.0 9.08 × 10−2 4 0.9014
0.05 (81) 0.125 (81) 5.0 4.70 × 10−2 4 0.9500
0.05 (81) 0.0063 (161) 2.5 2.39 × 10−2 4 0.9757

The nonlinear problem (24) was solved by applying the iteration scheme (21). The
condition εi t := ‖u(n+1)

h − u(n)
h ‖∞, with εi t = 10−3 was used as a stopping criteria

for the iteration process. Numerical results obtained on different grids are shown in
Table 3.

The absolute sup-norm errors obtained for different grid parameters Nx , Nt are
given in the fourth column of the table. As the fifth column of the table shows, the
number of iterations does not increase, by increasing the grid sizes. Further, the approx-
imation error ηt tends to 1 by increasing the grid size. This result agrees with the order
of approximation O(ht ) of the difference scheme (23), with respect to time mesh
parameter ht .

All these results show that the accuracy of the above discrete model is high enough.

5 Further computational experiments and discussions

In this section we discuss results of computational experiments related to the reduced
identification problem (17). Based on these results we will analyze the behavior of
the concentration function u(x, t) with respect to the time t > 0 and space x > 0
variables. Then we study an influence of valences z0, zr of the oxidized and reduced
species, and also the diffusivity ratio κ = Dr/D0, to the behavior of the scaled total
charge q(t).

The numerical solutions of the reduced identification problem (17), obtained by
the above iteration algorithm, are plotted in Fig. 1. These solutions correspond to the
admissible values 〈z0, zr 〉 = 〈−2, − 3〉; 〈−3, − 4〉; 〈2, 1〉; 〈3, 2〉 of valences, and
the diffusivity ratio κ = 0.5. As show all figures, for fixed time t > 0 the solution
u(n)

h (x, t) decreases rapidly and monotonically on the space interval [0, 1]. Further, in
all cases the solutions are smooth functions. These results agree with the theoretical
results proposed in [11], as well as with the experimental results described in [1,2].
These figures also show that the behavior of the concentration function u(x, t) with
respect to the time variable t > 0, and with respect to the space variable x ∈ [0, L], are
different. Specifically, for fixed space variable x > 0, the solution u(n)

h (x, t) increases
slowly and monotonically from 0 to 1 in the time interval [0, 1]. At the same time,
for fixed time variable t > 0, this solution decreases rapidly and monotonically in the
space interval [0, 1].

The second part of computational experiments is related to the behavior of the
scaled total charge q(t) depending on the values of valences given in Table 1. Figure 2
shows the profiles of the total charge qh(t). These functions are obtained from the
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Fig. 1 Numerical solutions u(n)
h of the reduced identification problem (17), corresponding to different

values of valences of the oxidized and reduced species

corresponding numerical solutions uh(x, t) of the reduced problem (17), with subse-
quent calculation of the integral (11), by the numerical integration trapezoidal formula.
The profiles of the total charge qh(t) plotted in Fig. 2 correspond to the four admis-
sible values of the valences, given in Table 1. The solid line in the middle is the
function qC (t) = √

t , which corresponds to the classical Cottrellian. The lower
two graphs correspond to the positive values of valences z0 and zr , while the up-
per three graphs correspond to the negative ones. For all negative z0 and zr , the
migrational and diffusional contributions to the flux of the reduced species act in the
same direction. Hence, the resulting contributions to the flux of the reduced species
extend further from the electrode than the purely diffusional profile. This conclusion
is consistent with the values of the scaled total charge q(t), plotted in Fig. 2 (upper
from the classical Cottrellian), and corresponding to the negative values of valences.
Further, for positive values of valences, the migrational and diffusional contributions
to the flux of the reduces species act in the opposite directions. Consequently, in
this case mass transfer of the reduced species away from the electrode is less fac-
ile that in purely diffusive case. The corresponding values of the scaled total charge
q(t), plotted in Fig. 2 (under the classical Cottrellian), is also consistent with this
conclusion.
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Fig. 2 The identified function qh(t) corresponding to the different values of the valences

The above computational results permit also to analyze an influence of the diffusiv-
ities Dr and D0 of the oxidized and reduced species to the behavior of the scaled total
charge q(t). Due to the relationship κ = z0/zr = Dr/D0, the values of valences of
the oxidized and reduced species, given on the first line of Table 1, correspond to the
values of the diffusivity ratio κ > 0, given, on the second line of Table 1. Enumerating
these values in the increasing order, as

κ1 = 1/2 < κ2 = 2/3 < κ3 = 3/4 > κ4 = 3/2 < κ5 = 2,

we can see from Fig. 2 that the mapping κ �→ q[κ] is an antitone one:

κi < κi+1 ⇒ q[κi ] > q[κi+1].

The reason of this phenomenon is that, for a given diffusivity Dr of the reduced
species, the diffusivity D(i)

0 of the oxidized species is defined via the diffusivity ratio

κi > 0, is as follows: D(i)
0 = Dr/κi > 0. Hence the above increasing values κi < κi+1

of the diffusivity ratio correspond to the decreasing values D(i)
0 > D(i+1)

0 of the oxi-
dized species. As it was noted in the physical model, the concentration u = u(x, t) of
the reduced species at the electrode increases, as oxidized species are reduced. Hence
u[D(i)

0 ] > u[D(i+1)
0 ], which implies q[κi ] > q[κi+1].
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6 Conclusions

In this paper, we analyzed the mathematical model of the nonlinear ion transport
problem, which includes diffusion and migration. We derive a new method of solu-
tion, reducing the identification problem to the initial-boundary problem for strongly
nonlinear parabolic equation, by eliminating the nonlocal additional condition. Based
on this method we propose a numerical iteration algorithm for solving the identification
problem. The theoretical results have been validated using real physical parameters.
The presented computational results are consistent with their physical meaning and
experimental results for real systems.
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